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ABSTRACT

Dihydrofuran and dihydropyran epoxides undergo alkylative double ring opening with organolithiums to provide a new route to substituted
alkenediols.

Epoxides are widely utilized as versatile synthetic intermedi-
ates.1 Their reactions are dominated by the electrophilic
nature of the epoxide, generally involve cleavage of the
strained three-membered ring, and include a wide range of
nucleophilic ring openings and acid- and base-induced
isomerization reactions. The alkylative deoxygenation of
epoxides1 using organolithiums to give substituted alkenes
2 (Scheme 1) was originally discovered by Crandall and Lin,2

and a number of research groups have subsequently made
contributions to this area.3

In one development of this methodology, Mioskowski and
co-workers reported in 1996 that the reaction of organo-

lithiums with cyclopentene- and cyclohexene-derived ep-
oxides possessing aâ-methoxy substituent results in the
elimination of methoxide and formation of substituted cyclic
allylic alcohols (e.g., Scheme 2).4

Arising out of these previous observations, and in con-
nection with our studies concerning the reactions of organo-
lithiums with cycloalkene- and heterocycloalkene-derived
epoxides,5 we considered whether the chemistry illustrated
in Scheme 2 could be extended to elimination from a cyclic
ether3 (Scheme 3). Both ethereal oxygens would be retained
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as hydroxyl groups in the product, and the overall process
would represent a new strategy to substituted alkenediols4.

Initially we chose to probe the above hypothesis with
readily available 3,4-epoxytetrahydrofuran5.6 Pleasingly,
reaction of 3,4-epoxytetrahydrofuran5 with n-BuLi (2.5
equiv) in THF at-78 °C gave 3-butylbut-3-ene-1,2-diol77

in excellent yield (90%, Scheme 4). As in Mioskowski’s

work (Scheme 2), the current reaction proceeds via ether
cleavage rather than loss of Li2O;4 this is despiteâ-elimina-
tion from the presumed lithiated intermediate6 (Scheme 4)
being the reverse of a stereoelectronically disfavored 5-endo-
trig cyclization.8

The new alkylative double ring opening process exhibits
scope with respect to the type of organolithium that can be
used. Primary, secondary, and tertiary alkyllithiums, as well
as phenyllithium and (trimethylsilylmethyl)lithium, all un-
derwent successful reaction with 3,4-epoxytetrahydrofuran
5 under the above conditions (Scheme 5).7,9 Given the utility
of allylsilanes in synthesis,10 the straightforward synthesis
of allylsilane13 (in one step from commercial materials) is
noteworthy.

An alkyl substituent on the epoxide ring of 3,4-epoxy-
dihydrofuran is tolerated in the reaction. Pentyl-substituted
epoxide 14,11 when treated withn-BuLi, was found to
undergo the transformation to give tertiary allylic alcohol
15 (Scheme 6), in comparable yield to that of the parent

system5. The Prins-pinacol rearrangement12 of 15 to the
3-acyl-substituted tetrahydrofuran16 (Scheme 6) demon-
strates one application of such a tertiary allylic alcohol
formed in this reaction.

A study of 2,5-disubstituted-3,4-epoxytetrahydrofurans was
undertaken to further examine the effect of substituents on
the rearrangement and as a probe of the stereospecificity3b

of the process. Methylation and epoxidation13 of cis-2,5-
bis(hydroxymethyl)-2,5-dihydrofuran (17)14 gave a chro-
matographically separable mixture of epoxides18 and19.15
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The relative stereochemistry of18 and19 was determined
by 1H NOE studies (Scheme 7).

On treatment withn-BuLi, each diastereomeric epoxide
gave a geometric isomer of the same trisubstituted olefin.
These reactions are stereospecific:cis,trans-18exclusively
gave theE-olefin 20 in 90% yield, andcis,cis-19exclusively
gave theZ-olefin 21 in 65% yield (Scheme 8).16

The above results are consistent with a reaction mechanism
which proceeds from the lithiated epoxide (e.g.,22 from 18,
Scheme 9) via a 1,2-metalate shift17 (with concomitant
epoxide opening), followed byanti-â-elimination of Li and
furanyl O from alkoxide23.18

While the process failed with cyclic and acyclic derivatives
of the epoxide ofcis-but-2-ene-1,4-diol,19 the reaction could
be successfully extended to dihydropyran epoxides (Scheme

10). Treatment of dihydropyran epoxides2420 and2621 with
n-BuLi yields the corresponding substituted pentene-1,3-diols
25 (70% yield) and27 (60% yield). Formation of pentenediol
25 suggests that the “cyclic” alkoxy substituentâ to the
epoxide directs the epoxide lithiation vicinal to itself.22

In conclusion, we have demonstrated that dihydrofuran
and dihydropyran epoxides undergo alkylative double ring
opening with organolithiums to provide a new route to
substituted alkenediols. Extensions of the process to other
epoxides, organolithiums, and asymmetric transformations
and manipulation of the adducts toward targets of biological
interest are under investigation.
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(15) Epoxidation withmCPBA (1.1 equiv, CH2Cl2, 25 °C, 16 h) gave
epoxides18 and19 (18:19, 1:2) in 75% yield.
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